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1.0 Executive Summary 
 

The increasing complexity of networked computer systems and applications has led to a 
tremendous interest in what some have termed autonomic computing: the notion of self-
managing software as an attractive approach to reducing the time and effort costs of 
operating and maintaining software systems, and to increasing their dependability and 
assurance levels. Some such technologies are already being promoted commercially, e.g., 
several major vendors sell enterprise applications that require little help from IT staff to 
run and maintain. However, most ignore both legacy software and the increasingly 
common assembly of large scale systems from components supplied by multiple sources, 
including COTS, GOTS and open source, instead assuming the customer or user will be 
willing and able to adopt a new generation of “solutions” from a single vendor.   

A few general-purpose facilities have been developed to automate problem detection for 
arbitrary target systems.  For example, some new operating systems include engines to 
automate the collection of crash data; other tools help detect anomalous behavior by 
monitoring system and application logs.  However, these approaches generally leave 
analysis of what the system is doing (or not doing), how and why, to a human systems 
administrator, who must then determine, plan and carry out the reconfiguration or repair.   

To do better, Columbia has investigated a generic framework for not just collecting but 
also interpreting behavioral data at runtime, said interpretation tailored to the target 
system by introduction of system models that describe expected correct behaviors and 
possibly also anticipated error situations that can automatically be recognized as having 
occurred, or not occurred, as the case may be.  Further, the framework includes a 
feedback control loop to automatically decide when corrections are required, construct 
and instantiate repair plans, and coordinate the performance (and handle contingencies) 
of the possibly many interdependent elements required for target system reconfiguration 
– in many cases with no “down time”, while the system continues operation. 

Columbia has developed the “Kinesthetics eXtreme” (KX, pronounced “kicks”) 
autonomic computing infrastructure for legacy systems and systems of systems, 
consisting of four main kinds of components - sensors, gauges, controllers, and effectors 
– communicating with each other through a publish/subscribe event notification facility.  
KX is the only complete implementation of the reference architecture (see Figure 1), and 
standard APIs for these components, devised together with a consortium of DASADA 
researchers (including Teknowledge, CMU, OBJS and BBN as well as Columbia and its 
subcontractor WPI).  

Sensors  (also known as probes) watch the target system to collect primitive data, while 
separate gauges aggregate, filter and interpret the sensor data according to system 
models. KX’s sensor/gauge monitoring framework can be used with or without a control 
feedback loop that automatically performs dynamic adaptations. Without the feedback 
loop, gauges would typically generate alerts and/or be visualized on a human systems 
management console. 
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KX’s automated adaptation framework supplements the monitoring framework with 
decision, coordination and actuation capabilities. Based on the coalesced and interpreted 
sensor data relayed by gauges and on modeled information about the target system, a 
controller makes decisions on what adaptations (if any) need to be done. This triggers a 
controller facility to plan and orchestrate the work of one or more effectors - which 
interact with the target system to carry out the low-level tweaks and tuning, and/or 
coarser subsystem restarts and reconfigurations, directed by the adaptation plan.  

KX has been used successfully to monitor and repair a variety of target systems - 
including DoD, industry, and academic applications - thus demonstrating achievement of 
the self-configuring, self-healing, self-optimizing goals of autonomic computing for 
legacy systems and systems of systems.   

 

Decision & 
Coordination B 

 

Figure 1. Reference Architecture 
 
2.0 Objectives and Scope 
 
Defense applications are rightfully viewed as fundamentally different from mass-market 
general-purpose software. There are relatively few customers and it is unacceptable for 
critical defense applications to suddenly terminate with a message asking whether or not 
the user wants to submit the error data to Microsoft, as is (unfortunately) typical of many 
consumer software packages.  Concerns about security have led in recent years to some 
“hardening” of enterprise server software, but it is still common to solve glitches in many 
data centers by restarting the applications or rebooting the host (or restarting on another 
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host), typically conducted manually by systems administration staff. However, the DoD 
requires its critical software systems to achieve the highest levels of assurance, 
dependability, and adaptability – and often continuous availability and survivability: 
human systems management, alone, is usually not an acceptable solution. 
 
The DASADA program presented a paradigm shift offering a novel and promising 
approach, intended to enable the DoD to adopt and leverage the proven functionality of 
existing COTS and open source software assets: Continual design, continual coordination 
and continual validation.  In this model, components are selected or constructed, 
customized to the application domain, and continuously evaluated before, during and 
after system assembly - and on-the-fly reassembly - to ensure that they can and do 
operate together with the rest of the system, and its current context, within the tolerated 
bounds.   Continual monitoring and reconfiguration (validation and coordination, 
respectively) are particularly essential for assured applications, since assurances that may 
have been met at initial system design time may not prove to be appropriate for field 
conditions that may be subject to rapid change while the system is running.  Such 
applications typically cannot be “taken down” for long re-engineering or enhancement 
cycles, but must be dynamically and automatically repaired in response to runtime sensor 
data and feedback from runtime analysis gauges of functional and extra-functional 
system properties.  
 
Two necessary bases for all three facets of dynamic assembly are: (1) being able to 
precisely determine and usefully specify the variation inherent in using “foreign” 
software components, connectors, and their configurations; and (2) being able to measure 
that software components, including middleware and other actualized connectors, fit and 
continue to fit together as system and context change, within functional and extra-
functional tolerances permitted by the dynamically evolving requirements of critical 
software systems.  The measurement probes must be insertable into legacy as well as new 
components and compositions, and presentable to humans and automated decision 
algorithms in timely fashion as readily interpretable gauges, to prevent inappropriate 
system assemblies and trigger reassemblies promptly when needed.  
 
However, it is simply impossible to include all possible meters, and appropriate 
mechanisms for interpreting gauge notifications, say, as customizations built into a 
system when it is designed or initially deployed:  New components and platforms, or 
advancing technologies, may mandate or enable new metrics and feedback (or 
feedforward).  Thus a practical means is needed for rapidly inserting and configuring new 
sensors and gauges, and for deploying new repair plans, without significantly degrading 
system performance.  Moreover, of course, measurement tasks and data must not 
themselves compromise assurance, dependability, adaptability, availability or 
survivability properties.  One implication is that such data and tasks should be accessed 
and applied only on a “need to know” basis, rather than swamping communication, 
computation and storage resources by dispersing every sensor event throughout the 
distributed architecture – without knowledge of where it is “needed”, e.g., to maintain a 
particular analysis gauge and/or instantiate a particular repair facility.  
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A model analogous to the DASADA paradigm has been promoted by IBM and its 
partners in recent years under the buzz phrase “autonomic computing”, which has been 
widely adopted by the research and development community.  However, most academic 
and industry efforts in this new field are primarily concerned with data center operations 
and/or grid computing, and – most significantly - assume that new software systems are 
designed and implemented from the ground up with autonomic capabilities (self-
management, self-monitoring, self-reconfiguration, self-optimization, etc.) “built in”. 
Although that approach may be ideal in some sense, it is impractical for either DoD or 
commercial applications involving legacy systems or systems of systems constructed out 
of components from multiple sources. 
 
Columbia University and Worcester Polytechnic Institute (WPI) jointly proposed to the 
DASADA program to develop continual validation components and infrastructure in a 
form able to retrofit onto legacy systems and systems of systems externally, without any 
need to understand or modify the target system’s code. Said continual validation 
functions as the open-loop frontend of autonomic computing, via intelligent automated 
monitoring of the target system. Although this was not explicitly part of the original 
proposal, Columbia also closed the autonomic feedback loop by developing backend 
components that perform automatic reconfiguration and/or repair, in essence adding 
continual coordination to the original continual validation goals. The lightweight design 
and separation of concerns eases adoption of individual components, whether directed to 
monitoring or repair, independent of the rest of the full infrastructure. The Columbia/WPI 
effort did not address the continual design aspect of DASADA. 

 
3.0 Approach 
 
The main components of this “external” infrastructure include sensors, gauges, 
controllers and effectors: 
 
Sensors (or probes in DASADA parlance), watch target environment elements to produce 
time series of data. Sensors may emit relatively simple events corresponding to local 
activities as they occur, more complex events reflecting substantive summaries of logs, or 
alerts generated via an internal analysis (e.g., as in intrusion detection anomaly detectors). 
Most sensors are small, constrained, noninvasive pieces of code which get installed in or 
around the target system. There are numerous approaches to software system 
instrumentation, some of them available commercially. Some inject callbacks into source 
code (when source code is available and recompilation feasible), such as WPI’s AIDE. 
Others modify bytecodes or binaries, such as OBJS’ ProbeMeister, or replace Dynamic 
Linking Libraries (DLLs) or other dynamic libraries, such as Teknowledge’s mediated 
connectors. Some operate in the surrounding environment, e.g., to inspect network traffic 
or operating system resource usage.  
 
Gauges, which interpret and analyze data originating from one or more sensors. Gauges 
are intended to recognize that abstract semantic conditions or incidents have occurred (or 
are about to occur) in the target environment - or alternatively have not occurred within a 
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required time-bound.  Gauges may potentially operate according to an effective hierarchy 
where higher-level gauges take as input partial analyses from lower-level gauges.   
 
Controllers encompass decision and coordination capabilities. Controllers decide whether 
certain conditions or incidents (detected by gauges) warrant system adaptation, and select 
the most suitable dynamic adaptation strategy amongst those known (or automatically 
inventible).  Controllers instantiate and orchestrate effectors, which might include 
ordering or other dependencies among the effectors’ tasks. Controllers may also 
reconfigure gauges and sensors (and themselves). While decision vs. coordination could, 
in principle, be separated in the architecture, the rationale for combining them is to 
simplify continual analysis during adaptation: the controller can then consider 
intermediate outputs from effector activities as well as gauges, possibly leading in some 
cases to rollback, retry and/or reconstruction of the adaptation plan, analogous to 
workflow exception handling. 
 
Effectors are modules that tune the target system via exposed configuration parameters, 
perform partial replacement by initiating/retiring services, invoke special utilities such as 
the process migration, etc. Effectors are necessarily more tightly coupled to the target 
system than the rest of the architecture, often employing relatively ad hoc technology that 
can vary widely. Options include mobile agents, Java Management eXtensions (JMX) 
management beans, Simple Object Access Protocal-based (SOAP-based) interfaces, 
publish/subscribe events, etc.   
 
Behavioral Models (see Figure 1) constitute an implicit component necessary to provide 
relevant information about the target system or its environment: what is its architecture 
and communication topology, how it is supposed to operate, what are its performance or 
security requirements or characteristics, and so on, possibly including negative models 
indicating expectations about what might “go wrong”. These models are used to 
customize generic gauge and controller facilities to the specific target system, to indicate 
what to look for and what to do about it. The models do not necessarily have to be known 
a priori, but could be derived while the system runs.  The set of models is intended to be 
open-ended, with new ones added or old ones updated or removed incrementally.  
Behavioral models need not exist as separate runtime entities, but would usually be 
deployed into the other components. 
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Figure 2. KX Architecture. 
 

The final delivered version of the continual coordination and validation infrastructure is 
called Kinesthetics eXtreme (KX, pronounced “kicks”).  As shown in Figure 2, 
communication among sensors, gauges and controllers was implemented via a 
publish/subscribe event notification system.  Any of the then-available content-based 
messaging systems could have been used. The Siena event system from U. Colorado was 
chosen, as among the most advanced distributed event propagation systems where both 
source code and support were readily available. Some experiments were alternatively 
conducted with Elvin, originally from U. Queensland, Australia (since commercialized), 
due to its higher performance in cases where a single centralized router was acceptable.  
Communication between controllers and effectors was implemented point to point 
because of the need for synchronous interaction. 
 
Sensors and effectors are selected as appropriate for the target system, and are not 
formally part of KX.  In most experimental applications, Columbia’s Worklet mobile 
agents (originally developed for the DARPA Evolutionary Design of Complex Systems 
(EDCS) program) were employed as effectors. The WPI part of the effort developed 
Active Interface Development Environment (AIDE) as one approach to sensor 
construction and deployment; that work is elaborated in the WPI volume of this final 
report. KX also includes an Event Packager (EP) component placed between the sensors 
and the event bus, to transform into the common event format, remove duplicates, 
timestamp events according to a globally synchronized clock, and act as a “flight 
recorder” to store both the raw events and their translations in a persistent log.  This log 
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supplies an SQL query interface for later “event mining”. EP also supports event replay, 
useful for debugging. 
 
KX's gauge component, the Event Distiller (ED), performs temporal event pattern 
recognition across continuous event streams from multiple sensors.  ED currently 
operates over events formatted as Siena's attribute-value pairs.  ED is configured with 
manually specified “rules” defining the event patterns representing desirable and 
undesirable behaviors or conditions, basically in terms of states and transitions, with 
certain states performing success actions such as sending messages to the controller or 
triggering another state machine’s start state. ED’s rule language supports variable 
bindings, event reordering (within a time window), logic constructs, bounded and 
unbounded looping, chaining, absorption, etc. Incomplete state machines are garbage 
collected after time bounds expire, in that case invoking failure actions from matched 
states. A given KX instance consists of one ED component, which subscribes to all 
sensor events, and distributes those events internally among the newly initialized and 
partially matched state machines. Backtracking is not supported; instead multiple 
transitions may be followed simultaneously. ED does not always determine the “root 
cause” of a problem, but instead may detect that something “bad” has happened - or that 
something “good” that was supposed to happen did not. 
 
KX’s controller is a decentralized workflow engine, Workflakes, which selects from a 
collection of predefined adaptation plans.  The plan guides instantiation and launch of 
effectors to enact the workflow's individual tasks. Workflow tasks and plans have mostly 
been handcoded in stylized Java, although there was some experimentation with 
Columbia’s home-grown interpreter for the Little-JIL workflow notation from U. 
Massachusetts (UMass’ own interpreter was unavailable due to licensing restrictions). 
Workflakes is implemented via “plugins” into the blackboard-based task processors 
provided by the open-source Cougaar multi-agent platform developed by BBN and 
others. The motivation for employing workflow to close the feedback loop lies in the 
observation that adapting complex systems of systems often requires a multiplicity of 
fine-grained interventions impacting separate target elements. Those interventions may 
be conditional or otherwise dependent on others; during their enactment, certain effector 
tasks may fail, calling for contingency planning. 
 

4.0 Detailed Task Descriptions 
 
The originally proposed KX research and development effort consisted of five major sub-
tasks: Active Interface Probing (AIP), Flexible eXtensible Markup Language (FleXML), 
Smart Event Active Connector Infrastructure (SEACI), Continual VAlidation COntrol 
Panel toolkit (CVACOP), and appropriate integration of all of these with relevant other 
DASADA prototypes.  
 
4.1 Active Interface Probing (AIP) 
WPI was primarily responsible for this subtask, which is reported in the companion WPI 
volume. 
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4.2 FleXML 
 
Flexible XML (FleXML) is an extension of XML that loosens various restrictions of 
XML proper, to enable XML data from different vocabularies to be treated as if all part 
of the same “language”, for the purpose of cross-application, cross-domain, and cross-
version filtering, aggregation and correlation. The approach is to delay binding of both 
syntax (schema) and semantics (tag processors) for XML fragments until needed. In 
particular, FleXML supports “cocktail” XML Schemas, where placeholders (processor 
instructions) are left to fill in new grammatical fragments on demand; smooth handling of 
data corresponding to older and newer versions of the same XML Schema; and 
introduction of special-purpose transformations and processing code for individual XML 
tags and attributes.   

FleXML’s primary use in KX to date has been as an optional plugin for the Event 
Packager, to intelligently convert from XML-formatted sensor output (such as generated 
by AIDE) to the XML or non-XML event vocabulary expected by the Event Distiller - 
currently Siena events consisting of unordered sequences of typed attribute/value pairs. 
Siena supports a naïve translation from XML data into its flat event namespace, but 
cannot handle hierarchical formats. 

 

Tag
Processor

Tag
Processor

Tag
Processor

Metaparser

Transformed XML
Document

XML
Fragment

XML
Fragment

XML
Fragment

Oracle

Derived Attributes
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Figure 3.  FleXML Internal Architecture. 
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4.2.1 The Metaparser 
The Metaparser first performs a validating parse of a FleXML message (event). Like 
typical XML parsers, it performs syntax and validity checks on the XML document to 
make sure that it is well-formed and corresponds to a known schema.  If either or both of 
these fail, a typical XML parser declares the document malformed or invalid, 
respectively, and stops parsing it.  FleXML documents, like XML documents, must be 
well-formed.  Rather than simply failing in the second error case (e.g., the next element 
tag is unknown or not acceptable at that point in the schema), however, the Metaparser 
attempts to resolve the problem autonomically.  The apparently erroneous XML 
fragment, along with namespace and XPath context, is passed to a separate component 
(the Oracle) that contains a repository of schema information.  If a matching subschema 
is found, it is installed into the Metaparser, which can then continue with its validation of 
the document. Note the problem fragment could appear “in the middle” of an otherwise 
valid message, so in effect the subschema is inserted into the parent schema at the 
relevant location. 

Composition of multiple schemas within the same message, with dynamic handling of the 
subschema discovery, is desirable in several situations.  Schemas may have been 
modified, the schema may be inherently “pluggable,” as with the SOAP envelope 
schema, or the message format may have been designed as an elaborate composition of 
separate grammatical components (using the FleXML placeholders mentioned above).  

As it parses each message fragment, the Metaparser calls the corresponding Tag 
Processors, if any happen to be associated with elements or attributes in the message.  
This is usually to rewrite or augment the original message, e.g., to standardize the format 
or highlight important attributes.  Both tasks use the Oracle to allow adaptive, autonomic 
behavior in an environment of potentially changing message formats and their 
“meaning”.  Note this autonomic behavior is with respect to the KX infrastructure itself, 
as opposed to the target system.  

4.2.2 Tag Processors 
Tag Processors are XML Stylesheet Language Transformations (XSLT) or mobile code 
components.  When the Metaparser hands off a message fragment to a Tag Processor, it 
also passes an “environment” associated with the message, where the Tag Processor can 
write its results as well as read results of previous Tag Processors.  This allows state to be 
maintained as the message is processed by multiple components; the Metaparser and Tag 
Processors are stateless across messages, however, to reduce complexity and size, and 
improve performance.  The Tag Processors, like the schema snippets, are discovered 
dynamically by querying the Oracle, allowing new Tag Processors to be deployed on the 
fly. 

Tag Processors use a combination of XSLT patterns and XML-specified rules to write 
values to the environment and possibly rewrite portions of the message.  The XSLT “rule 
template” can apply standard XSLT transforms, and/or add “virtual tags” to the message 
to identify particular side effects that should occur.  An XML “rule set” describes the 
various possible effects, including writing of a particular attribute-value pair to the 
environment, and/or executing an arbitrary piece of code.  Tag Processors are commonly 
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used to standardize different message formats into a single format, to augment messages 
with higher-level information, and to run arbitrary legacy code modules against 
messages.  The first two uses greatly reduce the burden on the Event Distiller. 

4.2.3 The Oracle 
The Oracle is a support database for the Metaparser and Tag Processors.  When presented 
with an unfamiliar tag and the context in which it appeared (namespace and XPath), the 
Oracle will attempt to find and return an appropriate schema or schema fragment, along 
with associated tag processors.   

4.3 Smart Event Active Connector Infrastructure (SEACI) 

4.3.1 GC-4 
Columbia originally proposed to develop GC-4, an improved (fourth) version of the 
Groupspace Controller event notification system it had developed for EDCS (culminating 
in version 2.5).  However, the GC effort was temporarily abandoned in favor of using 
Siena, as recommended by Dr. Salasin.  GC has been revived very recently under the new 
name MEET, for Multiply Extensible Event Transport, outside the scope of this effort.  

4.3.2 XUES 
XUES (XML-based Universal Event Service) consists of two main components, the 
Event Packager (EP) and the Event Distiller (ED).  The “XML-based” part is a 
misnomer, since the selection of Siena as the event bus limited the use of XML in KX.  
At present, EP supports XML (via FleXML) but ED does not. Continuing work on ED, 
outside the scope of this effort, intends to add XML support as well as use MEET for 
event notification. 
 

4.3.2.1 Event Packager 
 
The Event Packager (EP) component is architected to support a number of event input 
services, such as duplicate removal, transformation, and persistent spooling.  It utilizes a 
plug-in architecture to support a broad variety of incoming event formats (inputs); a 
variety of transformations, including persistent spooling and timestamping; and a variety 
of output event formats and other options (outputs).  New plugins can easily be 
synthesized; for example, Instant Messaging (IM) messages can be represented as a form 
of event input.  
 
The various plugins are coordinated via a user-definable metabase (metadata database) 
that dictates what should be done to the data (transforms) and where the data should be 
sent.  Transforms can include single-event processing tasks, such as event 
clock/timestamp synchronization, static event reformatting/rewriting, augmentation, and 
selective or complete event persistence. Typically, the goal is to have a number of 
different input formats streamlined, spooled, and aggregated onto one event stream for 
the other KX components. 
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Figure 4. Event Packager Internal Architecture 
 
The Event Packager implementation was designed from the ground up to be easy to 
extend.  Developing a new input, output, transform or store only requires that one Java 
class be extended, and some simple methods filled in.  This enables the quick and easy 
creation of wrappers around existing sensors and middleware.  The Event Packager uses 
its own opaque event format container to allow future support for new event formats 
without breaking compatibility with existing plugins (although for optimal performance, 
certain plugins might support introspection into event formats for specialized processing). 
By using opaque event containers, minimal per-event decision-making is needed, which 
enables the creation of fast pseudo-pipelined datapaths.  If more complex processing is 
needed, a transform can be applied - although this may affect event processing speed. 

Columbia has developed input plugins that support and standardize Siena and Elvin 
messaging, TCP socket streams (transporting both serialized Java objects and XML 
messages), console input, email (via sendmail), and AOL Instant Messaging (AIM) 
messaging as an event source.  A broad array of output formats closely mirrors these 
inputs. Transforms include event conversion (from Siena and ASCII formats) and event 
timestamp synchronization (to compensate for distributed clock environments).   
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EP also supports in-memory, JDBC-backed SQL, and flat-file (serialized object) stores. 
Persistent logging enables the Event Packager to support “latecomer” analysis, or 
“reanalysis” of previously-received event streams, as new Event Distiller gauges are 
deployed.  Multiple persistence techniques may be simultaneously employed via the 
plug-in model, so that rules can specify persistence to one or more data repositories, such 
as an SQL database, which enables the use of efficient offline analysis and data mining. 
 
The above components are arranged on-the-fly.  Upon startup, the Event Packager reads 
its configuration file and instantiates the necessary plugins and begins routing events.  
However, plugins can be added (via Java late-binding reflection mechanisms) and 
removed during runtime.   

EP currently consists of about 9,000 lines of Java code; the core engine that coordinates 
inputs, transforms, outputs and stores is about 2,000 lines, while the bundled plugins to 
deal with input, output, transform and store comprise the rest.  Some C glue code handles 
legacy integration.  The optional FleXML facility adds 2,200 lines of C++ and Java plus 
some XML files for the Metaparser and Oracle, and about 4,500 lines of Java for the 
accompanying Tag Processor architecture. A typical rulebase is usually a few hundred 
lines of XML. 
 

4.3.2.2 Event Distiller 
 
The Event Distiller (ED) is KX’s main gauge component. It performs sophisticated, 
possibly cross-stream temporal event pattern analysis and correlation across continuous 
data streams from multiple sensors, to monitor desirable and undesirable behaviors.  
When undesirable behaviors occur (or desired behaviors do not occur within the requisite 
time-bound), the Event Distiller generates meta-level events indicating this interpretation; 
these higher-level notification events also carry information about the lower-level sensor 
data that contributed to the analysis. (The original proposal included a separate “Event 
Notifier” component to generate these meta-events, but the implementation subsumes this 
function into the Event Distiller.) The Event Distiller is dynamically configured with the 
“rules” defining complex event patterns of interest – that is, the behavioral models 
regarding what to monitor – so new models can be added and previous models replaced 
or removed on the fly.  

Thus ED is responsible for detecting problematic or anomalous system activities by 
matching (gauging) sequences of events emitted by one or more sensors.  An event 
sequence is defined here as being a nondeterministic ordering of events ultimately 
indicating correct vs. incorrect behavior.  Such an event sequence’s transitions (between 
subsequent events) will almost always have timebounds so as to emphasize the real-time 
nature of the application domain and to act as a check on the nondeterminism.  
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Figure 5.  Event Distiller Internal Architecture 
 
An ED rule is partitioned into “states” and “actions”, where matches amongst the former 
are mapped to (meta-)events that are emitted that correspond to the latter.  This 
state/transition representation closely corresponds to a nondeterministic finite automaton 
– the idea is that one event may lead to many different possible subsidiary events, and 
one wants to match whichever ones are appropriate.  Transitions are inherently 
timebound to provide a control on the size of the nondeterministic matching problem – an 
expiration implies that a transition is no longer possible, and implementations can then 
garbage collect that test from the pool of potential matches for incoming events to reduce 
the amount of system state required during execution.  An alternative approach would be 
to provide backtracking, but this is impractical given the runtime requirements of such a 
system and the potentially huge number of events it may witness at any given time. 
 
The ED internal architecture supports several additional first-level constructs as defined 
in the rule language: 
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• Rule chaining is accomplished by allowing published actions from one rule to 
match other rules’ states.  This late-binding approach enables dynamic rules to be 
created and to immediately support chaining. 

• Looping provides Kleene star-like functionality, but can also match a specific 
number of times. 

• Success and failure actions can be made at any matched state.  A success action is 
published immediately upon reaching the state.  A failure action is one where all 
the transitions from that state to another state are eliminated and no further 
transitions can be done, and is sent upon successful garbage collection of the 
current rule instance.  Multiple success and failure states can be specified at each 
state if desired.  Such actions may trigger a rule chaining within the Event 
Distiller architecture, may be used by other interested components (such as 
controllers that begin applying a repair or reconfiguration workflow), or may even 
trigger human notification via some immediate communication channel, such as a 
pager. 

• Absorption enables a given state match to be exclusive, e.g., if a particular state of 
a particular rule enables absorption, all rules below it will not match state, even if 
they specify the exact same criteria as the first matched rule.  Note that this 
implies an ordering upon the rulebase, e.g., rules at the top have absorption 
capability over all other rules in the rulebase, whereas rules at the bottom can 
declare absorption but such a declaration has no effect. 

• Variable binding enables conditional matching – a value can be bound by the first 
match, and further states in a rule may require that value to appear in subsequent 
events.  This is useful for any sequence of events that refer to a common shared 
value, such as the name or unique identifier of a service being monitored.  

 
Internally, the Event Distiller uses a collection of nondeterministic state engines for 
temporal complex event pattern matching.  The rulebase is loaded into memory, and 
forms a series of “state machine templates”; once an event matches the first state of one 
of these templates, an instance of the template is automatically created to keep progress 
of the matching through the state machine.  While this is memory-intensive, it allows a 
richer representation of event sequences: logic constructs are supported, as are loops, rule 
chaining, and variable binding as required by the architecture.  Memory usage is 
mitigated by supporting timeouts and automatic garbage collection.  Timestamped event 
reordering is also supported, so if events arrive out-of-order within a certain window (1 
second by default), the Event Distiller will rearrange them appropriately so that 
sequences, and causality, can still be recognized correctly.  Note that such reordering, if 
done with many sources, requires some authoritative time declaration as close as possible 
to the sources themselves, as network latencies may be unpredictable.  If the generator of 
the events being matched doesn’t support timestamping, Event Packagers may be placed 
at the generation point or at its immediate network peer to create timestamps to enable 
reordering. 
 
The Event Distiller’s repertoire of event patterns may be populated in one of several 
ways: First, an XML-format rulebase is supported, where event sequence patterns are 
specified, along with timebound parameters among sequence elements as well as 
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“success” and “failure” notifications. There is also a GUI to assist a KX integrator 
(known as Continual VAlidation COntrol Panel Toolkit (CVACOP) in the original 
proposal); it also works as a systems management console for human engineers, although 
a major goal of the effort has been to automate many repairs within a KX feedback loop 
(via notifications to Workflakes).  Second, the Event Distiller supports dynamic rule 
generation – messages can be sent to the Event Distiller with XML snippets specifying a 
rule or a segment of a rule (e.g., to construct new rules on the fly or modify existing 
rules).  Currently, such rule modifications are received through the publish-subscribe 
channel, potentially containing an XML snippet that contains a full rule (e.g., states and 
actions) be matched from hereon.  Such rule changes affect templates and not currently-
matching rules (i.e., for future matches).  Third, as with the Event Packager, other sources 
can be easily integrated:  For instance, support for CMU’s Acme architectural description 
language constraints has been partially integrated: The Event Distiller can act as a 
“reporting gauge” onto the Acme Gauge Bus, thereby providing feedback to the 
corresponding architecturally-oriented repair tools. 

The Event Distiller implementation is in Java, currently about 7,000 lines of code. The 
event pattern rulebase may vary in length depending on the complexity of the behavioral 
model, but in the experiments were typically a few hundred lines of XML. Note that an 
Event Distiller rulebase defines the event patterns of interest, from the behavioral models, 
and is not related to an Event Packager rulebase specifying plugin configuration.  

4.3.3 Gaugents 
 
The Gaugents concept presented in the original proposal was based in part on the 
Worklets mobile agents first investigated for DARPA’s EDCS program, and in the end 
the Worklets name was retained.  However, Worklets were completely redesigned and 
reimplemented entirely in Java (about 4,000 lines of code), with none of the original 
JPython system reused. Worklets have been employed primarily as KX effectors, for 
direct manipulation of the target system being dynamically adapted, but have also been 
tried as a sensor technology, in that guise called “probelets”. 
 
Worklets carry self-contained mobile code that can act upon target components and 
follow directives indicating their route and operation parameters. Worklets provide a 
means for flexible software (re)configuration, with effects local to the target component. 
Each Worklet works with the component needing (re)configuration, deciding what to do 
on the basis of the component state and its own capabilities. Moreover, a Worklet can 
“hop” from one component to another, carrying out at each location a portion of a 
predetermined multi-step configuration sequence. A very simple example of this kind of 
reconfiguration would be dispatching a Worklet to modify the ports used for inter-
communication by two components of the target system: the Worklet would carry 
information about the various port numbers and code to activate new ports and deactivate 
old ones. 
 
Each Worklet can contain one or more mobile code snippets (called worklet junctions) 
that are suitable for actuating the required adaptation of the target system. Junctions’ data 
structures can be initialized with data, typically coming from the repair task definition, its 
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encompassing repair process context, and the information contained in the event(s) that 
represents the triggering condition. Furthermore, any process-related configuration of 
Worklets is accounted for by worklet jackets, which allow scripting of certain aspects of 
Worklet behavior in the course of its route. Among them, preconditions and timing for 
junction delivery and activation, repetition of junction execution, exit conditions for the 
junction’s work, directives to supersede, suspend, and reactivate a junction upon delivery 
of another one, and so on. 
 
The separate adaptation controller (e.g., Workflakes) requests junctions for the dynamic 
adaptation task at hand from a Worklet Factory, which has access to a categorized 
semantic catalogue of junction classes and instantiates them on its behalf. Interfaces 
exposed by junctions in the catalogue must be matched to the kind of capabilities that are 
necessary for the task and to descriptions of the target components subject to dynamic 
adaptation. 
 
Once a Worklet gets to a target component, the interaction between the junction(s) it 
carries and that component is mediated by a host adaptor, which semantically resolves 
any impedance mismatch between the interface of a junction and that of the component 
(see Figure 6). The original purpose of the host adaptor was to provide each worklet 
junction with a consistent abstract interface to a variety of component types, including 
COTS or legacy components, that can be subjected to forms of dynamic adaptation that 
are semantically equivalent from the worklet junction’s perspective. 
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Figure 6.  Selecting Junctions and Shipping Worklets 
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There is a tradeoff, however, between the complexity of the host adaptor and the 
complexity of the worklet junctions it supports.  The first realization of Worklets used 
JPython scripts for the entire worklet body, which allowed very simple Worklets but 
required a very heavyweight host adaptor (including, among other facilities, the entire 
JPython interpreter) – which made it unsuitable for the constrained-resource devices (e.g., 
PalmOS or PocketPC PDAs). Requiring the identical abstraction on such devices as on, 
say, conventional website servers, was prohibitive. The current implementation instead 
uses Java code augmented by Columbia’s own peculiar jacket scripting, which allows for 
lightweight/subset JVM implementations and relaxed requirements on host adaptors, e.g., 
in the simplest case to directly expose the local API “as is” - but of course requires more 
specialized knowledge and advanced capabilities on the part of individual worklet 
junctions. 
 
The transport services, as well as the worklet junction execution context and the 
interpretation of jacket scripts, are provided by a generic Worklet Virtual Machine 
(WVM) located at each target component intended to host Worklets (generally integrated 
into the host adaptor). For each dynamic adaptation task, the controller typically 
schedules the shipping of multiple Worklets. Each Worklet may traverse various hosts in 
its route, installing junctions in the corresponding WVMs. Execution of the procedural 
code of the junctions is (optionally) governed by jackets and carries out adaptation of the 
target component through the programmatic interface provided by the adaptor. Junctions’ 
data structures may be modified as a result of those operations. At the end of its route, the 
Worklet may go back to its origin, for any reporting and housekeeping needs, which are 
performed by a specialized origin junction. 

4.3.4 Continual VAlidation COntrol Panel toolkit (CVACOP) 
 
CVACOP (later renamed to TRIKX, Transitional Interface for KX) turned out to be a 
very minor aspect of this work.  It is discussed briefly as part of the Event Distiller 
discussion above. 
 

4.3.5 Integration with other DASADA contractors 
 
Most of the integration with prototypes developed by other DASADA participants is 
discussed as a propos above and below.  Software and/or notations from U. Colorado, 
BBN, CMU and U. Massachusetts were utilized most extensively.  We also collaborated 
closely with Teknowledge and OBJS (as well as BBN and CMU) on the standard 
reference architecture depicted in Section 1 and on standard APIs for sensors and gauges, 
and with ISI on applications (notably GeoWorlds). 

4.3.6 Other - Workflakes 
The original proposal did not include what became one of the most significant results of 
the effort: the Workflakes controller, which enabled closing the feedback loop – that is, 
autonomically performing continual coordination as well as continual validation. 
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To automate responses to the frontend monitoring, the output of gauges is input to a 
backend decision process that determines whether/how the target system must be 
adapted. In the simplest case, some gauge may assert a fact that already carries with it 
unequivocally defined consequences. Other times, a variety of tools could be exploited 
for decision support: for example, formal architectural knowledge models of the target 
system, coupled with constraint analysis and architecture transformation tools (e.g., 
CMU’s AcmeStudio). 
 
When a decision to apply some adaptation is made, a single action will sometimes suffice 
to fulfill it. In most cases, however, the adaptation will have to be mapped onto several 
finer-grained and concerted activities, impacting several implementation-level elements. 
Then a sophisticated coordination mechanism is needed: some of those activities may be 
conditional, or dependent on others, or may fail, calling for contingency planning, etc. 
 
To address that complexity, Workflakes relies on process-based coordination, and treats 
gauge outputs as input triggers for the enactment of a tailored adaptation process. The 
choice of process technology as the coordination paradigm for dynamic adaptation is 
motivated by its ability of expressing even very complex patterns of coordination and 
dynamic dependencies in an explicit and abstract way that is also executable and 
reusable. Furthermore, process enactment engines are increasingly mature, even when 
applied, as in agent-based systems and Enterprise Application Integration (EAI), to 
completely automated rather than human coordination subjects. 
 
A Workflakes process unfolds according to a task decomposition strategy, which in the 
end generates, configures, activates groups of effectors, and coordinates them towards 
actuating the desired side effects onto the running target system. Effectors are considered 
a first-class resource: they must be explicitly described in the process enacted by the 
Workflakes engine. 
 
The impact of effectors can range from the adjustment of a single operation parameter, to 
a method call, to complex reconfigurations of the target architecture - involving many 
components and connectors at once. Similarly, the technologies that can be used to 
implement effectors may greatly vary, depending on their reach as well as the nature of 
their target: they are often the most target-dependent elements in our approach, and are 
likely to be handcrafted. However, a significant amount of standardization of the 
interface between the process engine and the effectors it coordinates can be achieved, and 
can help decoupling the control and the actuation layers across technology and 
application contexts.  
 
Such an interface is relatively simple at the conceptual level, and requires means for the 
process engine to look up, instantiate or recruit, configure and activate the effectors, and 
for the effectors to report back the outcome of their work in a meaningful form for the  
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process engine. The implementation of this conceptual interface of course varies 
depending on the technological underpinnings of the effectors employed. 
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Figure 7.  Representation of a typical Workflakes Task Processor 
 
The current implementation of the Workflakes runtime engine relies on a specialization 
of the Cougaar open–source distributed platform. Cougaar’s decentralized task processors 
provide us with a number of largely autonomous controllers for the enactment of 
distributed dynamic adaptation processes. Each task processor is further specified as a set 
of Cougaar plugins. Plugins allow customizing the functionality of task processors by 
inserting components that implement a particular logic or specific capability. As shown 
in Figure 7, a typical Workflakes task processor includes several of what Cougaar calls 
Logic Data Model (LDM) plugins, which are used to import and convert KX gauge-
generated meta-events in terms of process facts, maintain internal knowledge about the 
target system and its state, and access a repository of effectors; an Expander plugin to 
load process definitions and spell them out as hierarchical decompositions of tasks; an 
Allocator plugin to map tasks to effectors and target components as needed; and an 
Executor plugin that handles the instantiation and shipment of effectors. 
 
Workflakes task processors interact with the Worklets mobile agents utility in two 
different ways. Some Worklets implement effectors that carry out the details of the 
dynamic adaptation process onto the target system components and connectors. One of 
the major responsibilities of the Workflakes process is therefore to decide what Worklet 
mobile code needs to be dispatched for a given dynamic adaptation task. That is why the 
repository of effectors descriptions (see Figure 6) is an essential component, and the 
corresponding effectors are treated as first-class process resources. 
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Workflakes also uses Worklets to load process definitions on the fly onto task processors, 
either with a pull or a push modality. The rationale for such a facility is that the dynamic 
adaptation of target applications is likely to call for dynamically adaptable controllers and 
coordinators. In Workflakes, the plugins of any task processor are initially idle and 
devoid of any hardcoded logic related to any particular process; for that reason, they are 
called shell plugins. The set of shell plugins launched within a task processor at start time 
is therefore merely indicative of the kinds of service and functionality that the cluster is 
meant to offer within the overall distributed Workflakes engine. Shell plugins can be 
activated at any time via the injection of specific process definition Worklets. Those 
Worklets dynamically deploy process fragments to the most convenient task processor 
for execution. Only after such deployment, shell plugins acquire a definite behavior, and 
start taking part in the enactment of the process.  
 
Such a process delivery mechanism is effective for a centralized as well as a more 
scalable, decentralized process enactment architecture. It may, for example, be used in 
the pull modality to incrementally retrieve process fragments from a process repository 
when requested to handle certain specific adaptations, or in the push modality for on-the-
fly process evolution across a distributed Workflakes installation. 
 
Workflakes, not including Cougaar or Worklets, consists of about 2,200 lines of Java 
code.  
 
5.0 Experimental Results 
 
Several experimental KX applications are described, demonstrating the wide applicability 
of the approach. 
 
5.1 Service Failures  
 

KX was integrated with a complex GIS (Geographical Information System) intelligence 
analysis tool developed at the USC Information Sciences Institute (ISI), known as 
GeoWorlds.  GeoWorlds uses a distributed set of services glued together by Jini.  While 
the system generally works well, sometimes services stop running, with no recourse 
except to wait for the request to time out and manually restart the appropriate backend 
subsystem.  For example, its reliance on harvesting standard websites (e.g., 
www.bbc.co.uk), for news items that maps to locations in GIS, is subject to frequent 
glitches.  
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<state name="Start" timebound="-1" children="End" actions="" fail_actions=""> 
   <attribute name="Service" value="*service"/> 
   <attribute name="Status" value="Started"/> 
   <attribute name="ipAddr" value="*ipaddr"/> 
   <attribute name="ipPort" value="*ipport"/> 
   <attribute name="time" value="*time"/> 
</state> 
<state name="End" timebound="15000" children="" actions="Debug" fail_actions="Crash"> 
   <attribute name="Service" value="*service"/> 
   <attribute name="State" value="FINISHED_STATE"/> 
   <attribute name="ipAddr" value="*ipaddr"/> 
   <attribute name="ipPort" value="*ipport"/> 
   <attribute name="time" value="*time2"/> 
</state> 
 

 

Figure 8.  Failure Detection Pattern 

I’s AIDE was used to automatically instrument the GeoWorlds Java source code, and 
articular the mechanism that dealt with request-to-service dispatch, with sensors that 

nitored the start and end of method calls relevant to contacting external services.  The 
nt Distiller incorporated rules to monitor a variety of method calls, making sure that a 
mination” call matched up with each “initiation” call within an appropriate timebound 
ging from seconds to a minute).   

ure 8 shows a simple event pattern used to perform failure detection. The incoming 
sors reporting Status and State values track method completion.  If for some reason a 
NISHED_STATE” was not received within 15 seconds after a method had initiated, 
system sent out the “Crash” event; otherwise, the (misnomer) “Debug” notification 
ld be emitted, signifying a “success”. Note that the strings prefixed with an asterisk 

”) designate a variable binding, e.g., the Event Distiller substitutes all instances of 
ervice” by the first source that it sees for this instance of the rule.  Thus this one rule 
 match a large number of different sources and subjects.   

en Workflakes received a “Crash” event, the repair involved a simple restart of the 
ice specified in the message generated by the Distiller.  A more sophisticated repair, 
ch was not implemented, would have coordinated multiple services to prevent having 
restart a long transaction from scratch, instead using partial results preceding the 
ividual service failure.  

 Load Balancing 

eral GeoWorlds execution scripts relied on computationally-intensive backend 
ices, such as a noun phraser that analyzed incoming news articles and extracted 
ns for mapping to GIS attributes; crash avoidance and performance maximization 
ugh request relocation was clearly desirable.  To accomplish this, the relocatability of 
 services was exploited to build a load-balancing solution for GeoWorlds.  A system 
nitor sensor measured the overall load on the backend system(s) running the noun 
aser. 
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CMU’s Acme architectural description language was used to specify constraints. The 
Acme Gauge Extractor constructed Event Distiller rules based on the predefined 
architectural constraints. The Event Distiller then acted as a “reporting gauge” onto the 
Acme Gauge Bus, thereby providing feedback to the corresponding architecturally-
oriented repair tools. An Acme architectural description of GeoWorlds included specified 
system load constraints on the appropriate services.  During the execution of various 
services, if this load exceeded a predetermined threshold for an extended period of time 
(as specified by the Acme constraint), the Event Distiller detected and reported it as a 
violation of the architectural constraints. The triggered repair caused the service to move 
to a different Jini-enabled host. The load and service state were also visualized using 
AcmeStudio’s architectural diagram tools, so one could watch the feedback loop in 
action.  
 
Additional logic was programmed into the Event Distiller rulebase to detect oscillation.  
In particular, if many Event Distiller messages requesting a load-balance were detected 
within a short timespan, one of two tacks could be selected: either eliminating load 
balancing between the two oscillating hosts for future repair plans, or increasing the load 
threshhold in the architectural constraints.   
 
5.3 Quality of Service 
 
Columbia had the opportunity to experiment with a commercial J2EE-based multi-
channel Instant Messaging (IM) service used daily by thousands of real-world end-users. 
First, on-demand scalability was added: by probing user sign-on events and server 
request queues, KX was able to determine the load of each member of the IM server farm 
and take appropriate actions whenever needed.  Repairs, selected on the basis of the 
inferences carried out using Event Distiller rules, encompassed modifications to the 
threading model of active servers, or even on-the-fly deployment and activation of 
additional server instances and corresponding reconfiguration of the commercial load-
balancer of the IM server farm to redirect client traffic to these new servers.  Failure 
detection was also supported from a load-balancing standpoint: information on server 
failures and interconnections between servers and backend DBMS entities was similarly 
captured to facilitate load balancer reconfiguration to direct client traffic to still-
functional servers.  The same set of sensors and effectors, coupled with slightly different 
Event Distiller gauge rules and Workflakes repairs, were also used to support controlled 
and graceful staging of the service infrastructure; this enabled automated software release 
deployment without necessitating a complete shutdown (and service interruption) during 
transitions. 
 
A set of quantitative results were derived from running and observing the adapted IM 
system in lab conditions, with both manual and automated traffic simulation that 
reproduced in-the-field demands on the IM service.  These results focus on the 
improvement via automation in the support, maintenance and management activities 
typically carried out on the IM service under field conditions. Also, some measurements 
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about the development and integration effort necessary to implement the case study were 
taken. The most significant quantitative results are:  
 

• Substantial reduction in effort for deployment and configuration of an IM service 
in the field, originally around ½ person-day, with locally present experts. With 
KX, that was reduced to 1-2 minutes from a remote location. 

 
• Reduced monitoring and maintenance effort necessary to ensure the health of the 

running service. KX completely automates the 24/7/365 monitoring of a set of 
major service parameters, as well as the counter-measures to be taken for a set of 
well-known critical conditions. 

 
• Reduced reaction times and improved reliability: for example, KX recognizes the 

overload of an IM server in 1-2 seconds and takes approximately 40 seconds to 
put in place an additional server replica. Overload detection was originally 
manual, starting with accumulated application logs – a clearly error-prone 
approach, potentially endangering service availability. 

 
• Manageable coding complexity: KX sensors, gauges and effectors were derived 

from generic code instrumentation templates and then customized with situational 
logic. This results in rather compact code: 15 lines of Java code on average for 
sensors, and usually less than 100 lines for effectors.  The total code written for 
this specific experiment on top of the generic monitoring and dynamic adaptation 
facilities provided by the KX infrastructure was approximately 2,000 lines of Java 
and XML code. 

 
This study demonstrated the utility of a KX end-to-end feedback loop for service 
management and application-level QoS in an industrial context. Traditional application 
management practices report warnings, alarms and other information to some 
knowledgeable human operator who can recognize situations as they occur and take 
actions as needed – with very limited automation in the management platform.  Instead, 
the KX approach offers a high level of guidance, coordination and automation to enforce 
what is a complex but often repeatable and codifiable process. 
 

5.4 Spam Detection and Blocking 
 
In order to demonstrate KX’s flexibility beyond the more conventional system 
management cases above, Sendmail, a popular email Message Transfer Agent (MTA), 
was instrumented to capture messages being received in a target network.  A Sendmail 
milter was installed to capture incoming traffic.  The Event Distiller rules (see Figure 9) 
would trigger if multiple (3+) messages containing the same source and Message-ID were 
received in a very short timespan (under 10 seconds). Once detection has occurred, a 
mobile agent effector is dispatched to reconfigure the Sendmail MTA to block all further 
messages from that source address, by rewriting the configuration file and sending a 
hangup signal (SIGHUP) to Sendmail to reload its configuration.   
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This solution worked for simple spam – i.e., one message sent by a spammer to a broad 
number of people in the same organization would verifiably get caught and future 
communication from that spammer would be blocked.  While this technique is 
superceded by better spam-specific technologies, such as SpamAssassin, which uses 
dynamic rules and Bayesian learning to distinguish more “stealthy” spam, this example 
demonstrates the broad utility of our Event Distiller’s timebound-based pattern matching, 
in this case with email-specific semantics.   
 

 
 

<state name="a" timebound="-1" children="b"> 
   <attribute name="from" value="*1"/>  
   <attribute name="messageID" value="*2"/> 
</state> 
<state name="b" timebound="100" count="1" children="" actions="A,B" fail_actions="F" absorb="true"> 
   <attribute name="from" value="*1"/> 
   <attribute name="messageID" value="*2"/> 
</state> 

Figure 9.  Sample Pattern to Detect Repeated Emails 
 

5.5 Multimedia Synchronization across Multiple Users 
 
Adaptive Internet Interactive Team Video (AI2TV) is an NSF-funded project concerned 
with, among other things, synchronization of “distance learning” lecture videos among 
dispersed students studying together or working on a team project.  The students are 
assumed to watch from their homes, with dialup, DSL or cable connections.  Another 
faculty member at Columbia developed techniques whereby the mpeg video is 
“semantically compressed”, in the lower bandwidth cases as sequences of jpeg images 
automatically selected as the “best” rendition of the video given the bandwidth available 
(as opposed to, e.g., sending every Nth frame).  These sequences are precomputed for 
several anticipated bandwidth levels. 
 
The DASADA PI’s part of this non-DASADA effort is to synchronize among the student 
viewers such that they all see “the same thing at the same time” in the semantic sense, 
even though it may not be the same video frame, minimizing skew. It was found that 
synchronizing at the video server in a push model does not work very well, since it does 
not take into consideration what is actually viewed at the client.  
 
This problem provided an unexpected opportunity to employ the KX technologies 
developed for DASADA.  The approach taken was to add a separate feedback control 
loop that monitors the video clients and can dynamically adjust their configurations and 
parameters while they continue operation.  Sensors were inserted into the clients to 
determine what frames are actually showing, e.g., at 3 second intervals, and what is the 
actual current bandwidth.  The sensor data from all clients is input to the Workflakes 
controller, which then instantiates and coordinates local effectors that dynamically adjust 
for each client the selection of which compression level and which next frame to pull 
from the video server. This computation considers what is already in the client’s cache, 
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since Workflakes also prefetches from possibly higher resolution (lower compression) 
streams into client caches during idle time, e.g., when the users have “paused” the video 
to discuss a point.  
 
Experimental trials have used lecture videos taped by the Columbia Video Network 
(http://www.cvn.columbia.edu).  Bandwidth was artificially throttled in the lab.  An 
invented “goodness” metric, which weights aggregate resolution and skew, showed very 
nice results to date.  Measurements are continuing with alternative weighting schemes, to 
distinguish the contributions of synchronization vs. prefetching. 
 
Notice this problem could not possibly be addressed by conventional human systems 
management approaches, due to the time scale of the synchronization.  The successful 
application of KX components in this case demonstrates the potential to address continual 
coordination and continual validation of real-time software systems. 
 
6.0 Limitations and Suggestions for Future Work 
 

6.1 Gauge Issues 
 
The Event Distiller (ED) should be significantly redesigned and extended.  The 
hypothetical new ED2 would still recognize complex temporal event patterns, as at 
present akin to Stanford's earlier work on Rapide, but in the future would support 
enhanced timing-related operators and variable bindings, e.g., to enable detection of 
longer-term trends.   
 
One significant goal for such an ED2 would be to perform general correlation across 
events from two or more sensor streams, and notably to support longitudinal correlation 
over extended periods of time. For instance, consider the case of correlating alert streams 
from several different network-based surveillance detectors and/or host-based anomaly 
detectors in the security domain, to attempt to reduce false positives and pinpoint 
escalating incidents. It would be desirable to make these thresholds dynamically 
adjustable, understanding that increases in the number of prospective matches 
contributing to a final state as well as the length of time to wait for that final state will 
likely increase runtime overhead and decrease performance for other matches. Then one 
could comparatively exploit the Event Packager’s event mining interface (never used to 
date) for long-term pattern durations and/or many-stream correlations, which would not 
permit near-real-time recognition (and thus delay system management response).  
 
It would also be desirable to investigate fast matching algorithms considering very large 
numbers of sensor event inputs, in particular germane for (but not limited to) the multi-
stream correlation issue.  One idea is to reconsider the old RETE, TREAT and Gator 
discrimination network concepts used in AI production systems and databases.  Although 
this typically memory-intensive approach has arguably been beaten to death, some more 
recent rule-based systems have extended to time-stamped events and temporal constraints 
between events.  One possibility is combining an open-source implementation of RETE, 
called DROOLS (http://drools.org/), into a blackboard architecture, as a mechanism for 
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sharing persistent subexpression matching among temporal state machines within an ED2 
instance. 
 
A complementary approach might be to recognize patterns over vectors of events, where 
each vector element corresponds to the latest value from a given sensor stream - which 
may ease handling of patterns across sources that emit events at greatly different time 
intervals.  This idea is inspired by Cornell’s Astrolabe system, which maintains an 
analogous vector, which is not used in event pattern recognition directly, but instead 
provides a distributed repository for use by separate monitoring applications. An 
extension might be a “sliding vector window”, essentially a matrix, where the front row is 
the vector of latest values as above, and the remaining rows are past values.  These might 
be the last N values, or the values at N previous time epochs uniform across the vector 
(which might be different from the first case if the sensors emit at different rates), or the 
N most “interesting” values in time order, where “interesting” could be determined 
differently for each vector element (sensor), e.g., different from the previous recorded 
value by more than some threshold, or over/under some absolute threshold(s). 
 
Another topic not yet investigated would be to deploy multiple instances of ED2 in the 
same KX instance, usually but not necessarily with different rules, without unnecessary 
duplication of effort.  As a first step this would mean any given ED2 instance should only 
subscribe to events that could plausibly match its current pattern base, so it must 
automatically convert from its rules’ state transitions into subscriptions for the content-
based publish/subscribe event system.  Since the rulebase can be dynamically updated, 
adding and deleting rules, it would be necessary to develop algorithms for efficient 
incremental subscription update – a general concern for pub/sub systems since 
subscription churn can prove very expensive.  Most systems assume a relatively low 
churn rate, e.g., recent Siena experiments assumed subscription changes on average once 
every ten minutes, which may not be adequate for many DASADA-like applications. 
 
One purpose for deploying multiple gauge engines would be simply locality, to better 
handle multi-enclave target applications where most patterns of interest occur within a 
LAN, but some (e.g., management of multi-mirrored server farms) involve wide-area 
distribution where appropriate gauge (or gauge element within a hierarchy) placement is 
an issue.  There may not be a single placement algorithm that takes all factors into 
account; so different algorithms and heuristics should be investigated.  Another likely 
purpose for multiple gauges is load balancing, which should be considered in tandem 
with handling very large numbers of sensors.  
 
Another interesting case that would take advantage of a hierarchy (or lattice) among 
gauge units is to represent short-term problems and apparent non-problems as meta-
events subscribed to by specialized ED2 instances analyzing longitudinal trends, e.g., 
how often does this problem occur over time?, in what otherwise non-problematic 
context does it occur?, is the problem cyclic in nature?  Finally, consider gauges 
operating on behalf of different stakeholders in a system of systems deployment, who do 
not necessarily always have the same goals and requirements. Conflicts among what is 
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monitored may not be a big problem, but it could become a big problem if contradictory 
repair plans were issued. 
 
6.2 Controller Issues 
 
Workflakes should be reimplemented without Cougaar, which is simply too heavy-
weight. BPWS4J from IBM alphaworks, their implementation of the de facto BPEL4WS 
Web Services workflow language standard, might be suitable except the implementation 
details seem possibly too specific to Web Services. Another alternative is that U. 
Massachusetts be convinced to make its Little-JIL runtime engine externally available for 
research and education purposes. 
 
The chosen (or newly developed) workflow engine must be specialized towards 
automated coordination of software entities, as opposed to the more conventional use of 
workflow to organize human activities. It would, as in Workflakes, be triggered by gauge 
outputs to choose a dynamic adaptation plan, then instantiate or recruit and then 
superintend an appropriate collection of effectors to enact the plan’s tasks. The main area 
of new investigation would be constructing plans dynamically from predefined task 
elements, rather than selecting among “canned” plans with relatively minimal 
customization.  Plan elements would probably be ordered using conventional 
preconditions and postconditions from AI planning, possibly also considering Perry’s 
obligations for richer dependencies among tasks. The hardest part would likely be 
deriving contingency handling. 
 
However, workflow is not necessarily the best technology for decision and control, as it 
is relatively weak with respect to decision aside from the micro level of exception 
handling.  Workflow seems like the “obvious” approach to the Columbia PI, but that may 
be because she spent the first half of her career investigating software process workflow 
engines.  Alternatives such as the various non-workflow software coordination languages 
and multi-agent coordination mechanisms should be explored. 
 
Finally, it would be desirable to critically examine the presumption that decision and 
control are best united.  Section 5.2 sketches a small experiment uniting Workflakes as 
the controller with CMU’s architecture-based repair construction facility, but this was 
unfortunately rather cumbersome because both wanted to be “on top”, invoking the other 
as a subroutine.  The decision and control roles could potentially be subdivided further, 
e.g., into deciding there indeed is a problem (which to some extent gauges already do) vs. 
deciding what to do about it (architecture-based strategy) vs. how to go about it 
(workflow tactics). 
 

 27



  

Appendix A – WPI Subcontractor Final Report 
 

A.1 Executive Summary 
 
Columbia University and Worcester Polytechnic Institute (WPI) jointly proposed an 
architecture-based approach to run-time monitoring - i.e., continual validation - of the 
dynamic functional and extra-functional properties of component-based systems.  
Engineers would define the architecture of the target system in an architecture description 
language (ADL), which would then be inspected by our technology to semi-automatically 
insert software probes into component ports and actualized connector 
middleware/wrappers. These probes detect and report system events that cross 
component boundaries. Events are broadly construed including, but not limited to, 
procedure calls, I/O, memory, disk or network access, message passing, or hardware 
signals. Gauges can be integrated with automated decision facilities or directly displayed 
in a human-oriented GUI. (Un)desirable properties might optionally be specified to help 
identify temporal patterns that probabilistically foreshadow impending problems, and 
trigger preemptive reconfiguration through complementary continual coordination (and, 
indirectly, continual design). Probes could also insert anomalous events, for diagnostic 
purposes. 
 
The probes provide the entry points to an orthogonal monitoring meta-architecture 
(superimposed on the target system’s architecture), wherein the connectors operate as 
active connectors. The events generated by probes are converted to smart events 
represented in the eXtensible Markup Language (XML). Active connectors parse the 
XML streams, validate against the Document Type Definitions (DTDs), and transform 
and present as gauges according to eXtensible Stylesheet Language (XSL) style sheets. In 
addition to heading conventional meta-data (e.g., source host, timestamp), the markup 
tags indicate how to process these events to manage and update gauges, directly carrying 
the (mobile) code or describing where to find it. The meta-architecture is extensible and 
supports sophisticated gauges that may acquire, at run-time, XML processing modules 
for specific tagsets. This dynamism enables new gauges to be defined, and presented and 
acted upon, while a system is running - with no “down time” or significant 
reconfiguration solely to retrofit the monitoring infrastructure.  It also neatly addresses 
components from independent sources, perhaps with their own built-in monitoring and 
diagnostic approaches, as well as loosely coupled systems with “protections” limiting 
event propagation, e.g., across firewalls.  
 
 
A.2 Objectives 
 
The DASADA paradigm shift offers a promising approach to adopt and leverage the 
proven functionality of existing software assets: continual design, continual coordination 
and continual validation.  In this model, components are constructed, customized and 
evaluated before, during, and after system assembly and on-the-fly reassembly, to ensure 
that they can and do operate together with the rest of the system, and its current context, 
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within the tolerated bounds.   Continual validation is particularly essential for assured 
applications, since assurances that may have been met at initial system design time may 
not prove to be appropriate for field conditions that may be subject to rapid change while 
the system is running.  Such applications typically cannot be “taken down” for long 
reengineering or enhancement cycles, but must be dynamically assembled in response to 
feedback from run-time gauges of functional and extra-functional system properties.  
 
Two necessary bases for all three facets of dynamic assembly are: (1) being able to 
precisely determine and usefully specify the variation inherent in using “foreign” 
software components, connectors, and their configurations; and (2) being able to measure 
that software components, including middleware and other actualized connectors, fit and 
continue to fit together as system and context change, within functional and extra-
functional tolerances permitted by the dynamically evolving requirements of critical 
software systems.  The measurement probes must be insertable into legacy as well as new 
components and compositions and presentable to humans and automated decision 
algorithms in timely fashion as readily interpretable gauges, to prevent inappropriate 
system assemblies and trigger reassemblies promptly when needed.  
 
However, it is simply impossible to include all possible probes and gauges, and 
appropriate mechanisms for interpreting gauge notifications, say, as customizations built 
into a system when it is designed or initially deployed:  New components and platforms, 
or advancing technologies, may mandate or enable new metrics and feedback (or, as we 
advocate, feed-forward [SG96]).  Thus we need a practical means for rapidly inserting 
and configuring new probes and gauges, and setting up their feed-forward loops, without 
significantly degrading system performance.  Moreover, of course, measurement tasks 
and data must not themselves compromise high assurance, high dependability, and high 
adaptability properties.  One implication is that such data and tasks should be accessed 
and applied only on a “need to know” basis, rather than swamping communication, 
computation and storage resources by dispersing every event throughout the distributed 
architecture – without knowledge of where it is “needed” (e.g., to maintain a particular 
gauge).  
 
Columbia University and Worcester Polytechnic Institute (WPI) jointly proposed an 
architecture-based approach to dynamic gauging - i.e., continual validation - of the run-
time functional and extra-functional properties of component-based systems.  The target 
system’s architecture definition assists in semi-automatic insertion of (software) probes 
into component ports and actualized connector middleware/wrappers. Probes detect and 
report system events crossing component boundaries. “Events” are broadly construed, 
including but not limited to procedure calls, I/O, memory, disk or network access, 
message passing, or hardware signals. Properties could be presented as binary (yes/no) 
gauges, or as sophisticated gauges providing detailed information about what went wrong 
and when (e.g., a partial match against a protocol modeled as a Finite-State 
Automata(FSA) CVACOP).  Gauges can be routed to automated decision facilities and/or 
directly displayed in a human-oriented GUI. (Un)desirable properties might optionally be 
specified, to aid identification of temporal patterns that probabilistically foreshadow 
impending problems, and trigger pre-emptive reconfiguration through complementary 
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continual coordination (and, indirectly, continual design). Probes could also insert 
anomalous events, for diagnostic purposes. 
 

A.3 Approach 
 
Our approach combined the following three efforts: 
 

1. We attached “probes” to each component port, introducing before and after 
callbacks wrapped around each entry point, in the style of our active interfaces 
paradigm [Hei98b] - but now extended beyond procedure call to other connector 
types, including events, data accesses, linkages, streams, arbitrators, adaptors, and 
distributors (as in the taxonomy of Mehta et al [MMP99]). We developed as a 
deliverable the dasada probe infrastructure to be used as a basis for probing and 
monitoring the behavior of Java programs. The technology is language-independent, 
however, and can be ported to apply to other languages, such as C or C++. These 
probes rely on the Siena Internet-scale Event Notification Architecture to publish 
events for interested parties (gauges and others, as described in §2). 
 
2. We introduced a system of “gauges” that receive information from the probes. 
Within the larger DASADA community, there were numerous research groups 
developing domain-specific gauges that were “pre-targeted” for particular scenarios. 
We focused on the broader, more generic class of gauges that would more likely be 
considered to be a visualization engine. The SoftViz laboratory is the resulting 
deliverable that receives probe information from the dasada probe infrastructure (§1) 
and produces dynamic visualizations of the behavior of the system as it happens. 
SoftViz is thus a more powerful tool than a static visualizer of code structure or one 
that allows a post-mortem playback of events. All events visualized by SoftViz are 
received from the dasada probe infrastructure and can be treated as “live” (naturally 
offset by the latency in receiving and processing the event). 
 
3. The end-users of our monitoring systems will be guided and supported in their 
development of system-specific probes, gauges, gaugents, etc. by a Continual 
VAlidation COntrol Panel (CVACOP) customized for the target system’s component 
model. For the deliverables, we developed the core infrastructure described in §1 as 
well as the means to develop and deploy probes on-the-fly, once the underlying code 
base is properly instrumented. Thus we serve to create both static support (i.e., the 
essence of probes, how they are deployed, installed, and activated) and dynamic 
support (i.e., the ability to generate and package probes as needed).  
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Figure A-1: WPI Meta-Architecture 
 

A.3.1 Design 
 
The design of the Kinesthetic Extreme (KX) meta-architecture is shown in Figure A-1. 
The three approaches of our research effort combine to form a powerful feedback/feed-
forward system that enables the monitoring and reconfiguration of distributed 
component-based software systems. The probes (part 1 of our approach) are embedded 
within the target system using the AIDE technology (Deliverable TD1 and TD1.1). 
Events are then delivered to waiting gauges over the Siena Event substrate. Gauges (part 
2) receive these events and report status information to users; some gauges can be pre-
configured to take action upon the observation of threshold values, in which case the 
reactive feedback loop can reconfigure or otherwise alter the execution of the underlying 
target system (Deliverable TD4). To enable rapid user acceptance of the probing 
technology, a comprehensive supporting infrastructure was developed (Deliverable TD3 
and part 3 of our approach). In this final report of the DASADA effort, we outline the 
primary deliverables for the WPI subcontract of the Columbia University prime contract. 
 
A.4 Detailed Deliverables 
 
The KX research and development effort consists of four major sub-projects: Active 
Interface Probing (AIP), Smart Event Active Connector Infrastructure (SEACI), 
Continual VAlidation COntrol Panel toolkit (CVACOP), and Reactive Gaugent 
Framework (RGF).   
 
The deliverables shown below are drawn from the original technical proposal submitted 
jointly by Columbia University (prime) and WPI (subcontractor), and form the complete 
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set of deliverables for subcontract WPI. Each task description (TD) is numbered as 
originally listed within the technical proposal: 

• TD1: Active Interface Probing (AIP) 
• TD1.1: Architectural Validation toolkit (AVT) 
• TD3: Continual VAlidation COntrol Panel toolkit (CVACOP) 
• TD4: Reactive Gaugent Framework (RGF) 

 
Items from the original proposal not listed above (most notably the Smart Event Active 
Connector Infrastructure [SEACI]) are part of Columbia’s deliverables (contact Dr. Gail 
E. Kaiser). 
 

A.4.1 Active Interface Probing (TD1) and Architectural Validation 
Toolkit (TD1.1) 
We developed an active interface development environment (AIDE) to aid developers in 
incorporating active interfaces into their programs. AIDE has a parsing tool that pre-
processes a Java source file to embed the probes necessary for the gauge framework. 
Based on the ADAPT project, an NSF-funded effort (CCR-9733660), AIDE contains 
tools to automatically pre-process select methods under the guidance of a software 
engineer.  
 

A.4.1.1 Concepts 
We studied existing architecture description languages (ADLs) settling upon the use of 
ACME, as supported by AcmeLib [CMU99]. We investigated tools to exploit ADL 
specifications of target architectures to guide AIDE to automatically or semi-
automatically insert software probes into component ports and actualized connector 
middleware/wrappers. 
 
The concept of a probe is varied. For the purposes of AIDE, a probe can be attached to an 
instrumentation point within a target system; thus, the system must be pre-instrumented 
before it can receive a probe. When a method is instrumented for probing, its first 
statement will be a callback out to a possible probe (or set of probes); in addition, every 
exit point of the method is instrumented to insert a callback out to a probe immediately 
before the method is about to exit. The probe is essentially a method that will be invoked 
either before a method is to execute or just before it is about to exit (called the after 
probe). The after-probe has access to the return value, while both before- and after- 
probes are given the parameters to the original method. This probe model is inspired by 
earlier work done by the PI on adaptable software components (NSF grant CCR-
9733660). 

A.4.1.2 Results 
We investigated the necessary capabilities of the probes themselves and how to insert 
probes into component ports for components whose source code is available and thus can 
be pre-processed. This remained the primary focus for the contract, because of the rich 
data available to probes for such target software. There were other available probing 
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technologies from other DASADA researchers (most notably Balzer’s instrumenting 
connectors [BG99] and ProbeMeister [Object Services and Consulting, Inc., 
www.objs.com/DASADA]). The events emitted from WPI’s AIDE probes follow the 
same schema as events generated by other probing technologies. 
 

 

Figure A-2: AIDE Compiler Frontend. 
 
 
Positive Results 
 
The generic probes created by AIDE can be attached to any Java method of a class, 
including static methods. All parameters to the method are packaged and delivered to the 
probe for inspection. The probes are configured to work properly with the DASADA 
probe infrastructure and are thus unaware of the underlying event infrastructure for 
delivering the probe events. 
 
Each probe is lightweight. When installed and inactive, the overhead is a single if 
statement per method call. When activated, the overhead is a Hashtable lookup (near 
constant time) and Hashtables are created for each required probe (so the space overhead 
is directly related to the number of probes installed).  
 
Probes are packaged using the Java standard Java Archive (JAR) file format. Each probe 
is packaged with all supporting classes (if any) required to perform its operations. The 
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AIDE graphical user interface Compiler Frontend (see Figure A-2) enables users to 
select classes to be probed. AIDE records all choices so the user can easily alter the 
configuration of instrumented classes to which probes can be installed. The GUI 
Compiler Frontend enables users to select numerous classes and then, in a single 
operation, all selected classes (and their respective methods) are instrumented. All 
information about instrumented classes are stored in a set of XML meta-information files, 
for parsing by the AIDE Compiler Frontend, as well as the back end pre-processing 
engine that inserts the instrumentation. Thus, instrumenting can be viewed as simply one 
additional step in the compilation of the target system. 
 
Other groups, most notably David Garlan of CMU, have used the AIDE infrastructure 
developed at WPI successfully. Probes form part of the internal mechanisms for joint 
work for Kaiser and Valetto. 
 
Negative Results  
 
AIDE still has some features that are not fully integrated into the probing environment. 
For example, Java enables static blocks of code to be executed whenever a Java class is 
loaded, and currently these cannot have probes attached to them. 
 
The basic model of probing methods is both simple and powerful, but there are some 
weaknesses. Specifically, probes must be compiled separately from the target code base, 
yet the parameters to the probes use the types and classes developed within the target 
code base. To compile these probes, the user must set the CLASSPATH appropriately in 
order for Java’s Classloader to work properly. 
 

 
 

Figure A-3: Probe Deployment 
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A.4.2 Continual Validation Control Panel Toolkit (TD3) 
 
The Continual Validation Control Panel Toolkit (CVACOP) provides the vehicles needed 
to properly manage, reason about, and control a target component-based software system 
under the control of the KX system. CVACOP is built around a core infrastructure, called 
the DASADA probe infrastructure, which enables the run-time management of probes 
and their information. Thus, the “deliverable” for CVACOP is a set of Java code libraries 
that enable various probe- and gauge-development tools to properly function. The 
successful demonstrations of the DASADA probe infrastructure are included in the 
deliverables, and they include: (1) a small client/server game application used as a proof-
of-concept; (2) a dynamic client/server communication system with clients that can be 
relocated dynamically based upon changes in server policy. This demonstration is 
provided under the Consolidated DASAD Infrastructure (CDI) deliverables. 
 

A.4.2.1 Concepts 
The first contribution of the dasada probe infrastructure is the underlying facility for 
extracting information from run-time systems. We examined the ways that probes can 
collect information from running systems and cataloged a number of existing 
technologies that could serve as probes. We explicitly described a number of probe types 
that can be implemented using Active Interfaces. Our prototype information relies on 
lightweight Java probes that are connected to instrumentation points created by the 
Active Interface Development Environment (AIDE). 
 
A probe lifecycle is enabled by the dasada probe infrastructure. Probes are compiled and 
packaged into probe configuration modules, each of which represents a set of cohesive 
probes that must all be activated, or deactivated, as a unit. Probes are deployed in these 
units, and then installed and activated as appropriate. Figure A-3 shows the user interface 
whereby users can register and deploy probe configurations. 
 
The second contribution was the development of a probe run-time infrastructure that can 
be used to deploy and manage probes at run time. We described a high level design that 
would allow for implementation of the run-time infrastructure for the various probe 
mechanisms. We provided an implementation and demonstration of the design for Active 
Interfaces. The run-time infrastructure supports the monitoring of constructors, method 
calls, and static class methods. Each probe module is configured for a specific target 
system, and the deployment occurs using standard Hyper-text Transfer Protocol (HTTP) 
to transfer probe modules and The Scalable Internet Event Notification Architecture 
(SIENA) for all control messages.  
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Figure A-4: Probe Lifecycle Management. 
 
Once a probe is deployed, the configuration module (a Java Archive File) is downloaded 
to prepare it for instantiation and it is in the uninstalled state. It can be transformed into 
two states. An installed probe does no processing but can be activated upon request. 
Once active, a probe emits the events for which it has been created. Probes can rapidly be 
activated and deactivated as the system operates, allowing engineers to fine-tune their 
troubleshooting to focus in on problem areas of the system. The graphical user interface 
for manipulating the state of probes, called the Probe Configuration Window, is shown in 
Figure A-4. 
 
The final contribution of the DASADA probe infrastructure is the DASADA shell within 
which the target software system is deployed. The shell manages the set of probes 
deployed for a target system, responding to control messages from the probe 
configuration window. Because HTTP is used for deploying probes, the shell can be 
remote from the user machine issuing the requests. The shell further manages the set of 
instantiated probes and controls their communication for emitting events. The shell 
footprint is small and each element within the distributed target system must operate 
within the context of a shell. 
 
The DASADA probe infrastructure comes with a sample demonstration environment of a 
client/server network game. Both the client and the server in this demonstration can be 
probed, showing the flexibility and power of the approach. 
 

A.4.2.2 Results 
 
Positive Results  
 
The DASADA shell is the leveraging technology that enables instrumented Java classes 
to deploy and activate probes. It is a lightweight front-end that enables any stand-alone 
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Java application to be provided with an alternative means of launching the application, 
one that is DASADA-aware. Once the shell is activated, it is responsible for listening to 
underlying control messages that are sent over the SIENA substrate.  The shell enabled 
distributed component-based systems to be monitored in a consistent manner, because all 
events are broadcast to awaiting listeners over the SIENA substrate. 
 
By using existing standards for packaging (JAR) and deployment (HTTP), probe 
management is simplified. The graphical interfaces shown in Figure 3 and Figure 4 
provide the capability to enable managers to monitor and manage all active probe 
modules in the system. Each system being observed is assigned a “unique system ID” to 
ensure that the appropriate control messages and probe events are delivered to the 
appropriate listeners. 
 
The DASADA shell persistently stores the set of activate probes, the set of installed (but 
inactive) probes, and the set of deployed (but uninstalled) probes. In doing so, start-up 
time is greatly reduced, and the system is able to quickly recover the probe information 
from failures. The lifecycle for probes is defined by a state machine of allowable 
transitions and thus it could be extended (although this was not a primary requirement of 
the supplied deliverables). 
 
Negative Results 
 
The use of SIENA for transmitting events greatly enabled the building of the prototype 
systems. However, there is overhead that becomes apparent when the probed events 
occur rapidly, that is, when events are emitted faster than about five per second. We 
ensured that the probe infrastructure is as independent as possible from the underlying 
substrate, so one could envision a follow-up project that incorporates a more efficient 
event engine. 
 
There will invariably be perturbations in the target system when probes are invoked. The 
overhead is impossible to measure, because probes are generic and customized to emit 
events of interest to the probe. We only observed performance slow-downs, but it is 
theoretically possible that the probes could introduce race conditions, especially when 
multi-threaded programs are being probed. 
 

A.4.3 Reactive Gaugent Framework (TD4) 
 
The Reactive Gaugent Framework (RGF) was targeted to apply SEACI (a deliverable 
from Columbia University) to the feed-forward aspect of continual coordination (in 
additional to continual validation, the primary topic of this proposed effort). Because 
RGF needs to be contextualized for each domain to which it is applied, we provide 
prototyping facilities to DASADA contractors focusing on continual coordination for 
specific domains. The initial target domain is a reactive client/server system providing 
relocation services to clients (i.e., based on server policies, a client can be redirected to 
another server at a different host or port). 
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A.4.3.1 Concepts 
Software systems can be expressed in terms of an architecture consisting of interacting 
components. This architecture for a system is abstract and often ideal; its implementation 
is often imperfect and does not always follow the architecture’s structure. This 
inconsistency prohibits a straightforward mapping of changes in architecture to changes 
in implementation. The CDI prototype for the RGF aimed to develop a standard means of 
mapping standard architectural changes to non-standard implementation changes. As 
such, it is the most powerful evidence that the overall goals of the KX project, and the 
entire DASADA project, is valid. 
 
Several architecture description languages (ADLs) have been developed over the years, 
typically aimed at solving a specific problem in a particular domain. When describing an 
architecture, one can identify two distinct sets of definitions: 
 

• Architectural state depicts specific instances of components and specific 
interconnections for a give system at a give time. It is much like a snapshot of a 
system’s state at an architectural level. 

• Architectural style describes the vocabulary of component types and other 
architectural elements that can be used to build a particular architectural state. It 
can be considered the template from which allowed states can be constituted. 

 
Similar systems within the DASADA community have been built, notably Armani and 
Tailor from CMI [M01][SG02]. The CDI prototype we developed fully integrates the 
dasada probe infrastructure from § 5.2 and the AIDE technology from  § 5.1 to monitor 
the run-time behavior of systems.  
 

A.4.3.2 Results 
This project develop an architecture to 
implementation mapping that (1) bridges a 
decision (i.e., an architectural change) and 
a implementation in one direction and; (2) 
updates the architectural state to reflect 
implementation changes. We standardized 
the description of architectural changes by 
adopting a vocabulary of architectural 
events and a set of rules and procedures for 
using these events. Architectural events 
(AEs) manipulate an architectural state to 
produce a new, modified architectural 
state. Desired architectural changes are  
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Figure A-5: CDI Architecture. 
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modeled using a series of primitive events (i.e., createComponent, attachConnector). 
These events are then projected onto the running system through the aide of run-time 
effectors that are responsible for understanding how to carry out the desired low-level 
effect given a high-level change. Full details on the architectural events and their 
composition can be found in [ERZ03]. 
 
Positive Results 
 
The prototype system is able to translate observed behaviors from the emitted probe 
events into architectural reconfigurations that can be handled in a domain-specific way by 
effectors tailored for the targeted software system. 
 
We defined a standardized interface for effectors and the architectural state, allowing 
each to be configured to the appropriate target system or architectural definition 
language. Our target prototype uses the ACME ADL to represent state information, to 
enhance the interoperability with DASADA tools from other researchers. The prototype, 
called Consolidated Dasada Infrastructure (CDI), is described in [ERZ03]. A demo of the 
CDI is provided, with scripts and other supporting programs tailored for (1) Windows 
platforms; and (2) Unix or Linux. The directions for installation and running the 
demonstrations can be found within the CDI deliverables. 
 
We expect this to be more dependent on the target component framework, if any, than 
pure monitoring. Further, gaugents will generally be very specific to the target domain, so 
we provided prototyping facilities to DASADA contractors focusing on continual 
coordination for specific domains or target systems.  
 
Negative Results 
 
We had to make one change to the dasada probe infrastructure to support the need for 
effectors to observe the sudden disappearance of a process within the DASADA shell. 
The change was slight, however, and is the only instance where we were unable to 
cleanly separate the dasada probe infrastructure and CDI. 
 
While we have a working system, the decision maker as shown in Figure A-5 is pre-
programmed to react to specific events of interest. There needs to be more work (outside 
the scope of this effort) to make this component an effective and “intelligent” agent for 
recommending changes to the underlying run-time system. 
 
A.5 Summary 
 
This is the final report for WPI subcontractor for contract F30602-00-2-0611, Columbia 
University Prime contractor (Gail E. Kaiser). The contact for WPI is George Heineman 
(heineman@cs.wpi.edu) and all deliverables can be retrieved (including this final report) 
from www.cs.wpi.edu/~heineman/dasada.  
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